A Service-Oriented approach for integrating
MultiAgent Systems with Web Services in a
Collaboration application.

Eduardo H. Ramirez and Ramén F. Brena

Tecnolégico de Monterrey
Centro de Sistemas Inteligentes
{eduardo.ramirez,ramon.brena}@itesm.mx

Abstract. Service-oriented architectural paradigm (SOA) improves the
abstraction and flexibility on which information systems may be designed
and integrated, thus allowing agent-based and other AT applications to be
gradually and seamlessly adopted by large organizations. Web-services
standards for semantics and interoperability realize the SOA approach
and are key enablers for MultiAgent systems enterprise integration. In
this paper we show how the SOA paradigm and Web Services technolo-
gies may be used for designing and integrating agent-based applications
in a flexible and robust way. A case-study for a collaborative application
is presented.

1 Introduction

The Service-Oriented architecture paradigm (SOA) improves the abstraction
and flexibility on which information systems may be designed and integrated.
SOA foundation ideas were introduced by Arsajani[2] and sharply defined as:
“the architectural style that supports loosely coupled services to enable business
flexibility in an interoperable, technology-agnostic manner. SOA consists of a
composite set of business-aligned services that support a flexible and dynamically
re-configurable end-to-end business processes realization using interface-based
service descriptions([5]”.

There exists three roles or actors in a SOA that are shown on figure 1. A
service consumer, that locates a service provider in a service registry or broker,
then binds the service description and finally performs an invocation to the
provider. The loose coupling principle suggest the operations between actors
to be realized interchanging as little information as possible, usually through
message passing.

Even though the SOA architectural style is not bound to any particular
implementation technology, the Web Services standards are becoming a natural
and common choice. For the purposes of this work, we understand a Web Service
as “a software system designed to support interoperable machine-to-machine
interaction over a network. It has an interface described in a machine-processable
format (specifically WSDL [24]). Other systems interact with the Web Service

© A. Gelbukh, R. Monroy. (Eds.)
Advances in Artificial Intelligence Theory
Research on Computing Science 16, 2005, pp. 107-116

108 E. Ramirez, R. Brena

in a manner prescribed by its description using SOAP-messages [25], typically
conveyed using HTTP with an XML [23] serialization in conjunction with other
Web-related standards.” [26].

Close relationships between Web Services and Software agents[14] exist at the
semantic and interoperability level. Since the conception of the Semantic Web[4]
due to its semantic processing capabilities, agent technologies were strongly pro-
posed as Intelligent Web Service consumers[10], being able to discover, compose
and verify Web Services[27]. On the other side, agents are also a candidate tech-
nology to deliver knowledge-intensive Web Services[1][11]. However, in order to
allow agents to become intelligent Web Service providers, a number of technical
issues should be addressed.

Service
directory

find publish
A
Service N Service
requestor bind e provider

Fig. 1. Roles in a service-oriented architecture

2 SOA for MultiAgent Systems

The SOA approach and Web Services technologies could be used to overcome
the technical limitations required to integrate a MultiAgent System into an en-
terprise service-oriented environment. In a similar way, the SOA ideas can be
translated to the application internals to allow agents to provide a stable frame-
work for building robust Agent-based applications. A number of recent works
report how the SOA approach have been applied in several Al and multi-agent
systems and components[17][19][27].

A service-oriented approach for integrating multiagent systems ... 109

Portals,
web-apps

Service
interface

Agent
Legacy-apps >O based
[) application

Application
client

Enterprise
services
(Mail, LDAP)

Enterprise
Data sources
(DB, files)

Key:

C) System —— Calls {) Interface

Fig. 2. Decoupled architecture top-level view

2.1 SOA for agent-based application integration

In conformance with the SOA ideas, the main architectural principle for in-
tegrating a MultiAgent system into an enterprise environment consists of decou-
pling applications through the exposure of “coarse-grained” service interfaces.
As shown in figure 2, the underliying metaphor used to determine the design
strategy was the aim to create a “black-box” in which agents can live and per-
form complex knowledge-intensive tasks. Neither enterprise applications nor its
developers should be aware that a service is provided by agents if the system
offers a standard SOAP endpoint as interface.

Several integration architectures for agent-based application exists[22],[7],
however a particular approach, namely the “Embedded Web Service Architecture
(EWSA)” has proven to be enough simple and effective for this purpose with
a clear focus on agent-to-application communication. The proposal’s main idea
suggests embedding a Web Server into an agent-based application and defining
a interaction model upon which software agents and Web-components[20] may
communicate in order to provide services. Details on the approach can be found
on related work[18].

Once the integration problem is solved, the task of designing an adequate
set, of services is a classic software engineering problem and remains a particular
challenging activity by itself. Each agent-based application, may offer a different
set of agent-based web services. Some examples of knowledge-intensive services
from one of our agent projects[6] are:

Recommendation services A user’s profile is represented by a set of points in
the taxonomies, as each user could have many interests and could be located

110 E. Ramirez, R. Brena

Web container Agent container

Web 02A Web

Service
componentU ‘ e

Registry

VM

locates registers

Key:
= a Local interaction © Component

AR a Remote interaction © Container

Fig. 3. Integration architecture component view

at different parts of the organizational structure. As the system keeps track
of user interests and preferences it is able to recommend content to users on
demand. Recommended content may be used in Portals or Web applications.

Content search and classification A service agent that searches the most
relevant documents on particular data-sources can be constructed. The knowl-
edge that guides the search is handled by the ontology agent where the key-
words with which the search engine is invoked are defined. The documents
obtained by the search are qualified by a fuzzy system and then the best
ones are delivered to the users.

Subscription and alert services The system allows users to subscribe to changes
in specific areas. Also, users may customize the media and frequency of noti-
fications. Rules may be defined so as messages relative to certain topics are
handled with higher priorities. A rule may state that several alerts may be
sent to their cell-phone via SMS, and also define that interest-area messages
be sent in a weekly summary via email.

Content distribution services Enterprise applications may deliver content
to the system using its semantic-based content distribution services. When
new content is received it is classified and distributed to users who may be
interested. Users receive the notifications of new content as specified by their
own rules.

A service-oriented approach for integrating multiagent systems ... 111

[Embedded Web server)
[Agent platform]

| Lightweight

container P
| Notification Semantic Job
service processing scheduling

Persistence service
(DAO)

Fig. 4. Platform services framework, layered component view

2.2 A Service-Oriented framework for MultiAgent System design

Besides application integration, the service-oriented approach have gained
momentum for intra-application component communication. The SOA paradigm
have been reinforced by a new generation of non-invasive lightweight frame-
works[16],[15] that leverage contemporary software design principles such and
allow application developers to produce enterprise-level, yet simple applications.
The use of a lightweight framework like Spring[12] helps agent project teams
to decompose application in simple components that access and reuse a collec-
tion of platform services, thus simplifying programming and allowing a greater
abstraction to the specific agent development.

A generic application architecture is shown in figure 4, where some general-
purpose services may be provided by robust third-party tools. Each of the boxes
in figure4 represents a platform service that is configured and instantiated by
the lightweight container, the container also fulfills the “service registry” role
described in section 1. Each platform service is composed of a particular kind
of application components concerning a specific technical domain. The layer
metaphor gives an insight about the abstraction level of each application tier,
where high-level service components (i.e. web-components and agents), consume
the services of low-level components (i.e. data-access objects).

In the presented example (figure 4), there exists generic (Web, Agent, Persis-
tence) and custom services (shaded) like the Scheduling and Notification services.
For this specific case they were defined and implemented as follows:

Embedded Web Server . Implemented using the Tomcat Web Server[13], it
provides application with the capability of receiving HTTP requests and
turning them to a particular Web-component or Servlet in conformance with
the JSR-154[20] specification.

112 E. Ramirez, R. Brena

Agent platform . The execution environment for the agents provided by the
agent platform in conformity with FIPA[8] specifications. Particularly im-
plemented with the JADE[3] platform.

Scheduling service . Allows the agents and users of the applications to sched-
ule of periodic or time-triggered execution of custom jobs using the Quartz
Scheduler[21]. Job components are defined using an application specific hier-
archy of tasks and events (i.e. CheckMail, CheckAppointments, StartWork-
flow etc.).

Notification service . Allows the agents and web-components to access the
enterprise notification infrastructure, namely the mail service using the Java-
Mail APT and several SMS systems. Notification components are the drivers
for the distinct enterprise notification providers.

Semantic processing service . Provides access to a set of classification and
inference tools like the Jess rule engine[9]. Allows agents to perform simplified
queries to rule bases using native Java calls.

Persistence service . Implemented using the JDBC API and the components
in conformance with DAO pattern, it is a low-level platform service that
provides a simplified object access to enterprise data-sources to the servlets,
agents, jobs and other components in the application. It also offers access
to directory services such as LDAP for user authentication and profile syn-
chronization.

Following this approach, the particular agent-model of the system is designed
and implemented on the Agent platform, enabling agents with the capability of
programatically invoking any of the underliying platform services. We believe
that the use of such a framework becomes critical in agent projects where the
agent developers don’t share the same skill-set and concerns of enterprise ap-
plication developers, then, the use of service-oriented principles (loose coupling,
coarse grained interfaces) helps heterogeneous development teams to achieve a
clear division of work. One major drawback of the model is that imposes some
learning curve to the development teams which could lead to delays in the ini-
tial development cycles. Even tough the individual component developer learning
scope gets reduced, all developers should have a clear understanding of the over-
all system architecture beyond de agent model, and of the libraries and interfaces
that should be reused in order to interoperate with the underliying infrastructure
services.

3 A collaborative application case study

Web-applications are widespread tools for collaboration support in large orga-
nizations, however, its traditional style of development and architecture hardly
allows for a more sophisticated intelligent service to be included. For this kind of
cases, the SOA-integrated agent system may be a knowledge service provider. A
prototype groupware application was developed including the following standard
sets of features:

A service-oriented approach for integrating multiagent systems ... 113

Organizaciin

Bienvenido,

0 area.comp.so Desuscrib

(a) Message and file sharing (b) Group browsing

Fig. 5. Collaborative application prototype

— Users may create groups and join to existing groups. See figure 5(b).
— Users may browse the member list and conversations history of each group.
— Within groups users may exchange messages and share files. See figure 5(a).

3.1 Implementation of a recommendation service

Trivial features of a collaborative application could be enhanced by agent-based
web services, for example, consider the simple scenario in which a user joins
a workgroup using the collaborative application interface. After this event, the
system will send recommendations about documents related to group activity
and interests on a daily basis. Some of the internal services interaction needed
to fulfill this case are:

— Once the user joins the group, the collaborative application will invoke the
agent-based service using a standard coarse-grained interface.

— Periodical updates to the document base will be programmed to be triggered
upon certain conditions using the agent-platform scheduling service.

— Information gathered from data-sources and repositories will be classified
and filtered against the interests of the relevant groups using the semantic-
processing and classification services.

— Relevant information will be distributed to users using the agent-based no-
tification services, the system may leverage the use of several distribution
media (Email, SMS) to alert users of new documents and other application
events according to its relevance.

The components and services interactions for the use-case are shown in detail
in figure 6. It should be noticed that the use of generic services for Scheduling,
Notification and Classification allows the task-specific code (read documents,

114 E. Ramirez, R. Brena

1. JoinGroup(toplc unix')

O 2. SuggestRelatedDocuments(
CXSSE?Q?.Z‘? userjohn@company’,
End-user 'topic:unix')

h

3. RequestSuggestions()
Web Service
Component

\
4. scheduleTask('GetLatestNews','daily")
uggest

K Agent
Pl

8. sendMail()

NotificationService

7. classifyNewDocuments()
8. getRelatedDocuments()

6. sendResults()

Scheduling
Service

GetLatest
DocsTask

5. executeTask()
Classication

Service

Fig. 6. Use case enhancement using agent based services, detailed view

send mail) to be encapsulated in the lower layers of the system, thus enhancing
the abstraction level for the agent layer.

4 Conclusions

In this paper we have shown how the SOA paradigm and Web Services tech-
nologies may be used for designing and integrating agent-based applications as
service providers in enterprise software environments. Also, using the same de-
sign principles we have described a generic framework for intra-platform services
for implementing robust and reliable MultiAgent systems reusing high-quality
open source components like Spring[12], Jade[3], Quartz[21] and Tomcat[13].
Also we have presented a case study on a simple collaborative application that
shows the kind of feature improvements that can be done by the integration of
agent-based web services.

Future works we intend to do on collaborative features enhanced by agent-
based web services are:

— Taxonomy-based user profiles: User profiles are defined using several stan-
dard taxonomies like the organizational structure roles (which are assigned to
user by management); workgroups that may be freely created upon project

A service-oriented approach for integrating multiagent systems ... 115

requirements; and interest areas to which users get subscribed according
their professional or personal interests

User-defined messages: Users of a workgroup or a content area may send
custom messages. The message receivers are not selected by name rather
than by their role in the organization or their interest areas. A semantic
matching of message receivers may be produced using the web services.
Semantic file sharing: Users of the system may share documents to taxonomy-
based workgroups via the web-based interfaces. When a document is up-
loaded or updated, users subscribed to taxonomy child nodes will be noti-
fied according to their preferences. Example: A Unix tutorial is uploaded, so
users in the general Computing area, the more specific Operating Systems
sub-area, and the specific Unix area are notified of the addition. Also, when
a new file is submitted, it may be classified and automatically distributed to
a number of relevant groups outside the original receiver.

References

10.

11.

12.

Alun Preece and Stefan Decker. Intelligent web services. IEEE Intelligent Sys-
tems, 17(1), Ene-Feb 2002. http://www.csd.abdn.ac.uk/~apreece/research/
download/ieeeis2002.pdf.

A. Arsanjani. A domain-language approach to designing dynamic enterprise
component-based architectures to support business services. In 39th International
Conference and Ezhibition on Technology of Object-Oriented Languages and Sys-
tems, 2001. TOOLS 39, pages 130 — 141, Aug. 2001.

Fabio Bellifemine, Agostino Poggi, and Giovanni Rimassa. JADE - A FIPA-
compliant agent framework, http://jade.cselt.it/papers/PAAM.pdf. In Pro-
ceedings of PAAM’99, London, 1999.

T. Berners-Lee, J. Hendler, and O. Lassila. The semantic web. Scientific American,
284(5):35-43, 2001. Essay about the possibilities of the semantic web.

Bernhard Borges and Kerrie Holley and Ali Arsanjani. Service-Oriented Architec-
ture, Aug. 2004. http://webservices.sys-con.com/read/46175.htm.

R. Brena and J. Aguirre. Just-in-Time Knowledge Flow for Distributed Organiza-
tions using agents technology. In Knowledge Technologies 2001 Conference, Austin
Tezxas, Mar 2001.

Dick Cowan and Martin Griss et al. Making Software Agent Technology avail-
able to Enterprise Applications, http://www.hpl.hp.com/techreports/2002/
HPL-2002-211.pdf. Technical Report HPL-2002-211, HP Labs Technical Reports,
2002.

Foundation for Intelligent Physical Agents. FIPA Abstract Architecture Specifica-
tion, http://www.fipa.org/specs/fipa00001/, 2002.

Ernest Friedman-Hill. Jess, the rule engine for the java platform, 2005. http:
//herzberg.ca.sandia.gov/jess/.

J. Hendler. Agents and the Semantic Web, http://citeseer.ist.psu.edu/
hendlerOlagents.html. IEEE Intelligent Systems, 16(2), 2001.

Michael Hunhs. Agents as Web Services. IEEE Internet Computing, 6(4):93 —95,
Jul-Ago 2002.

Interface21 Limited. The Spring Java/J2EE application framework, http://www.
springframework.org/, 2005.

116

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

E. Ramirez, R. Brena

Jakarta Project - The Apache Software Foundation. The Tomcat Web Server v.
4.1, http://jakarta.apache.org/tomcat, 2003.

N. Jennings and M. Wooldridge. Software agents. IEE Review, 42(1):17 —20, 18
Jan. 1996.

Rod Johnson. Ezpert One-on-One J2EE Design and Development. Wrox Press
Ltd., Birmingham, UK, UK, 2002.

Rod Johnson. J2EE development frameworks. Computer, 38(1):107-110, 2005.
G.F. Laforga and R.F. Romero. A services-oriented architecture applied to artificial
neural network. In 9th International Conference on Neural Information Processing,
ICONIP 02, volume 5, pages 2650 — 2654, Nov, 2002.

E. Ramirez and R. Brena. Web-enabling MultiAgent Systems. Lecture Notes in
Computer Science, IBERAMIA 2004, 3315, 2004.

H. Schuschel and M. Weske. Automated planning in a service-oriented architecture.
In 18th International IEEE Workshops on Enabling Technologies: Infrastructure
for Collaborative Enterprises, WET ICE 2004, pages 75-8, June 2004.

Sun Microsystems, Inc. JSR-000154 Java(TM) Servlet 2.4 Specification
(Final release), http://jcp.org/aboutJava/communityprocess/final/jsr154/
index.html, 2003.

The OpenSymphony Group. Quartz Enterpise Job Scheduler, http://www.
opensymphony . com/quartz/, 2005.

Whitestein Technologies, A.G. Web Services Agent Integration Project, http:
//wsai.sourceforge.net, 2003.

World Wide Web Consortium (W3C). Extensible Markup Language (XML) 1.0
(Second Edition), http://www.w3c.org/TR/2000/REC-xm1-20001006, 2000.
World Wide Web Consortium (W3C). Web Services Description Language
(WSDL) 1.1, http://www.w3c.org/TR/wsdl, 2001.

World Wide Web Consortium (W3C). Simple Object Access Protocol, http://
www.w3.org/TR/S0AP, 2003.

World Wide Web Consortium (W3C). Web Services Glossary, Working Dralft,
http://www.w3c.org/TR/ws-gloss/, Aug 2003.

S.J.H. Yang, B.C.W. Lan, and Jen-Yao Chung. A New Approach for Context
Aware SOA. In The 2005 IEEE International Conference on e-Technology, e-
Commerce and e-Service, EEE ’05, pages 438 — 443, March 2005.

